402 research outputs found

    Coalgebraic Trace Semantics for Buechi and Parity Automata

    Get PDF
    Despite its success in producing numerous general results on state-based dynamics, the theory of coalgebra has struggled to accommodate the Buechi acceptance condition---a basic notion in the theory of automata for infinite words or trees. In this paper we present a clean answer to the question that builds on the "maximality" characterization of infinite traces (by Jacobs and Cirstea): the accepted language of a Buechi automaton is characterized by two commuting diagrams, one for a least homomorphism and the other for a greatest, much like in a system of (least and greatest) fixed-point equations. This characterization works uniformly for the nondeterministic branching and the probabilistic one; and for words and trees alike. We present our results in terms of the parity acceptance condition that generalizes Buechi\u27s

    Parity Automata for Quantitative Linear Time Logics

    Get PDF
    We initiate a study of automata-based model checking for previously proposed quantitative linear time logics interpreted over coalgebras. Our results include: (i) an automata-theoretic characterisation of the semantics of these logics, based on a notion of extent of a quantitative parity automaton, (ii) a study of the expressive power of Buchi variants of such automata, with implications on the expressiveness of fragments of the logics considered, and (iii) a naive algorithm for computing extents, under additional assumptions on the domain of truth values

    Effects of disorder on lattice Ginzburg-Landau model of d-wave superconductors and superfluids

    Full text link
    We study the effects of quenched disorder on the two-dimensional d-wave superconductors (SC's) at zero temperature by Monte-Carlo simulations. The model is defined on the three-dimesional (3D) lattice and the SC pair field is put on each spatial link as motivated in the resonating-valence-bond theory of the high-TcT_{\rm c} SC's. For the nonrandom case, the model exhibits a second-order phase transition to a SC state as density of charge carriers is increased. It belongs to the universality class {\it different from} that of the 3D XY model. Quenched disorders (impurities) are introduced both in the hopping amplitude and the plaquette term of pair fields. Then the second-order transition disappears at a critical concentration of quenched disorder, pc15p_c\simeq 15%. Implication of the results to cold atomic systems in optical lattices is also discussed.Comment: 4 pages, 8 figure

    Simple Display System of Mechanical Properties of Cells and Their Dispersion

    Get PDF
    The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others

    Predictive value of heterogeneously enhanced MRI findings with CT evidence of calcification for severe motor deficits in spinal meningioma

    Get PDF
    OBJECTIVE: Spinal meningioma is mostly benign, but they can exhibit neurological deficit. The relationship between neurological impairment and its radiographic findings, including intratumor magnetic resonance imaging (MRI) gadolinium enhancement and calcification in computed tomography (CT) scan, has not been studied. The purpose of this study was to investigate the association of preoperative image findings with neurological status in spinal meningioma. METHODS: Patients histologically diagnosed with spinal meningioma (n = 24), with an average age of 65.4 years, were included. The patients were classified into 2 groups, the homogeneous and heterogeneous groups, based on the contrast-enhanced T1-weighted MRI findings. Further, baseline demographics (age, sex, presence of preoperative paralysis [manual muscle testing 3 or worse neurological deficit in upper and/or lower limbs], tumor level, tumor length, and tumor occupation ratio), histological findings (Ki-67 index and histological subtypes), and CT findings (presence of intratumor calcification and Hounsfield unit [HU] value) were examined. RESULTS: Preoperative paralysis was observed in 33.3% (8 of 24) of the patients. These patients exhibited frequent heterogeneous contrast-enhanced MRI findings than those without preoperative paralysis (57.1% vs. 14.3%, p = 0.040). Further, preoperative paralysis did not associate with tumor level, tumor length, tumor-occupied ratio, Ki-67 index, and histological subtypes. The heterogeneous group showed 100% intratumor calcification and higher maximum HU than the homogeneous group (1, 109.8 vs. 379.2, p = 0.001). CONCLUSION: The heterogeneous contrast-induced MRI findings in the spinal meningioma were significantly associated with preoperative neurological impairment. Moreover, the intratumor contrast-deficient region in the heterogeneously enhanced tumors reflected marked calcification. The tumor hardness due to calcification may be related to preoperative neurological deficit

    Paraplegia Caused by Multifocal Osteosarcoma With Spinal Lesions

    Get PDF
    Background: Multifocal osteosarcoma is a rare condition that may be either synchronous or metachronous. Spine involvement of multifocal osteosarcoma is very rare. Synchronous multifocal osteosarcoma is typically described as the occurrence of tumors at two or more sites in the absence of pulmonary metastases. Methods: A 55-year-old man initially presented with low back pain. Multiple osteosclerotic lesions were observed, primarily in the spine and pelvis, as well as in soft tissues. Lung lesions were observed, but they were relatively small at reference. Laboratory tests showed a markedly elevated alkaline phosphatase (ALP) level of 36, 416 U/L (normal range, 115-359 U/L). Based upon a diagnosis of osteosarcoma on biopsy, chemotherapy was administered, resulting in a decrease in ALP to 17, 833 U/L. Results: Decompression of the symptomatic compressed spinal cord and posterior spinal stabilization of T8-12 were performed. However, progressive extensions of multiple lesions to the spinal canal led to paraplegia with urinary dysfunction. Eleven months after the first visit to our hospital, the patient died due to multiple organ failure. Conclusions: Multifocal osteosarcoma accompanied by spinal lesions may lead to paraplegia, a clinical problem that negatively affects the quality of activities of daily living. Level of Evidence 4. Clinical Relevance: Multifocal osteosarcoma accompanied by spinal lesions may lead to paraplegia, a clinical problem that negatively affects the quality of life and activities of daily living

    Structural basis of L-glucose oxidation by scyllo-inositol dehydrogenase: Implications for a novel enzyme subfamily classification

    Get PDF
    For about 70 years, L-glucose had been considered non-metabolizable by either mammalian or bacterial cells. Recently, however, an L-glucose catabolic pathway has been discovered in Paracoccus laeviglucosivorans, and the genes responsible cloned. Scyllo-inositol dehydrogenase is involved in the first step in the pathway that oxidizes L-glucose to produce L-glucono-1,5-lactone with concomitant reduction of NAD+ dependent manner. Here, we report the crystal structure of the ternary complex of scyllo-inositol dehydrogenase with NAD+ and L-glucono-1,5-lactone at 1.8 Å resolution. The enzyme adopts a homo-tetrameric structure, similar to those of the inositol dehydrogenase family, and the electron densities of the bound sugar was clearly observed, allowing identification of the residues responsible for interaction with the substrate in the catalytic site. In addition to the conserved catalytic residues (Lys106, Asp191, and His195), another residue, His318, located in the loop region of the adjacent subunit, is involved in substrate recognition. Site-directed mutagenesis confirmed the role of these residues in catalytic activity. We also report the complex structures of the enzyme with myo-inositol and scyllo-inosose. The Arg178 residue located in the flexible loop at the entrance of the catalytic site is also involved in substrate recognition, and plays an important role in accepting both L-glucose and inositols as substrates. On the basis of these structural features, which have not been identified in the known inositol dehydrogenases, and a phylogenetic analysis of IDH family enzymes, we suggest a novel subfamily of the GFO/IDH/MocA family. Since many enzymes in this family have not biochemically characterized, our results could promote to find their activities with various substrates
    corecore